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Particle physics computing with Brainwave 
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NOvA & jet identification at collider experiments 
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Motivation: Challenges of big science and computing
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CHALLENGES OF BIG SCIENCE AND COMPUTING

CMS as an example: Detectors becoming increasingly complex 
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• High-resolution 
detector 

• Order of 100 
Million 
channels



DETECTORS GETTING MORE COMPLEX!

CMS upgrade to get ready for HL-LHC data-taking: higher 
granularity, timing information etc.  
Example: CMS High Granularity Calorimeter 
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Jan 19, 2018CMS HGCal upgrade Huaqiao Zhang @ HKUST

The HGCal Geometries
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• HGCal

§ Ecal + Hcal

• Ecal (CE-E)

§ 28 layers Si + W/Pb/Cu

§ 25 X0 & ~1.3l

• Hcal (CE-H)

§ 24 layers Si/Scintillator

+ Stainless Steel

§ ~8.5l

• Total Silicon:

§ 600 m2

• Total scintillator

§ 500 m2

• 6 M Channels
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A SENSE OF SCALE

Challenges:
• Embedded readout electronics at 1mW/channel = 1.5 MW of power
• Timing on a system scale of millions of channels at the level of 50 ps
• In order to maintain good momentum resolution, enormous magnet needed (6T, 12m 

bore: ~60 GJ stored energy)
• Pile-up reaching 1000 events per bunch crossing
• Simply scaling CMS High Granularity Calorimeter would require >5,000 m2 of silicon!

12/9/18 P. Merkel - Generic Detector R&D 20

P.Merkel



SOPHISTICATED ALGORITHMS 
CMS as an example: Need sophisticated algorithms to fully exploit 
the information taken by more complex detectors 
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1

Jet tagging: which parton was that?

Jets have up to 50 particles with detailed information and secondary 
vertices →1000 features

What flavor is that?



CRITICAL FOR DISCOVERIES

CMS as an example: plenty of physics cases  
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Jet tagging: which parton was that?

Jets have up to 50 particles with detailed information and secondary 
vertices →1000 features

What flavor is that?
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Table 2: Expected and observed significances, in s, and observed signal strengths for the VH
production process with H ! bb. Results are shown separately for 2017 data, combined Run
2 (2016 and 2017) data, and for the combination of the Run 1 and Run 2 data sets. For the
2017 analysis, results are shown separately for the individual signal strengths for each channel
from a combined simultaneous fit to all channels. All results are obtained for mH = 125.09 GeV
combining statistical and systematic uncertainties.

Significance (s)
Data set Expected Observed Signal strength
2017

0-lepton 1.9 1.3 0.73 ± 0.65
1-lepton 1.8 2.6 1.32 ± 0.55
2-lepton 1.9 1.9 1.05 ± 0.59
Combined 3.1 3.3 1.08 ± 0.34

Run 2 4.2 4.4 1.06 ± 0.26

Run 1 + Run 2 4.9 4.8 1.01 ± 0.22
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Figure 2: Dijet invariant mass distribution for events weighted by S/(S + B) in all channels
combined in the 2016 and 2017 data sets. Weights are derived from a fit to the m(jj) distribu-
tion, as described in the text. Shown are data (points) and the fitted VH signal (red) and VZ
background (grey) distributions, with all other fitted background processes subtracted. The er-
ror bar for each bin represents the pre-subtraction 1s statistical uncertainty on the data, while
the grey hatching indicates the 1s total uncertainty on the signal and all background compo-
nents.

A combination of CMS measurements of the H ! bb decay is performed, including dedicated
analyses for the following production processes: VH (reported above), gluon fusion [38], vec-
tor boson fusion [44], and associated production with top quarks [30, 41, 42]. These analyses
use data collected at 7, 8 and 13 TeV, depending on the process. In this fit, most sources of

Yukawa coupling: 
H->bb



BOOM IN USING DEEP NEURAL NETWORKS

Deep neural network based algorithms perform the best 
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DeepNN shows best performance
M. Verzetti (CERN and FWO)

HF tagging @ CMS — arXiv:1712.07158

5.1 The b jet identification 23

In this figure, the tagging efficiency is integrated over the pT and h distributions of the jets
in the tt sample. The tagging efficiency is also shown for the Run 1 version of the CSV algo-
rithm. It should be noted that the CSV algorithm was trained on simulated multijet events at
centre-of-mass energy of 7 TeV using anti-kT jets clustered with a distance parameter R = 0.5.
Therefore, the comparison is not completely fair. The performance improvement expected from
a retraining is typically of the order of 1%. The absolute improvement in the b jet identification
efficiency for the CSVv2 (AVR) algorithm with respect to the CSV algorithm is of the order of
2–4% when the comparison is made at the same misidentification probability value for light-
flavour jets. An additional improvement of the order of 1–2% is seen when using IVF vertices
instead of AVR vertices in the CSVv2 algorithm. The cMVAv2 tagger performs around 3–4%
better than the CSVv2 algorithm for the same misidentification probability for light-flavour
jets. The DeepCSV P(b) + P(bb) tagger outperforms all the other b jet identification algo-
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Figure 16: Misidentification probability for c and light-flavour jets versus b jet identification
efficiency for various b tagging algorithms applied to jets in tt events.

rithms, when discriminating against c jets or light-flavour jets, except for b jet identification
efficiencies above 70% where the cMVAv2 tagger performs better when discriminating against
light-flavour jets. The absolute b identification efficiency improves by about 4% with respect to
the CSVv2 algorithm for a misidentification probability for light-flavour jets of 1%. Three stan-
dard working points are defined for each b tagging algorithm using jets with pT > 30 GeV in
simulated multijet events with 80 < p̂T < 120 GeV. The average jet pT in this sample of events
is about 75 GeV. These working points, “loose” (L), “medium” (M), and “tight” (T), correspond
to thresholds on the discriminator after which the misidentification probability is around 10%,
1%, and 0.1%, respectively, for light-flavour jets. The efficiency for correctly identifying b jets in
simulated tt events for each of the three working points of the various taggers is summarized
in Table 2.

The tagging efficiency depends on the jet pT, h, and the number of pileup interactions in the
event. This dependency is illustrated for the DeepCSV P(b) + P(bb) tagger in Fig. 17 using

Better



EVENT COMPLEXITY WILL GROW
Networks can grow bigger, number of networks will increase 
Network inferencing taking significant fraction of the final event processing time in CMS 
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• ResNet50: 25M parameters, 7B operations

• Examples of large networks used in CMS:

o DeepAK8, 500K parameters, 15M operations

o DeepDoubleB, 40K parameters, 700K operations

Size of DNNs

8Kevin PedroECoM2X

arXiv:1605.07678

DeepAK8
Boosted objects AK8



GROWING DATASET  10



ALL FACTORS:THE COMPUTING CHALLENGE  11

Current: ~5 minutes per HL-LHC event

Event complexity Total data 
processing time

50x>5x
2027 estimate CPU:  
~ 3.5 Million cores



MOORE’S LAW AND DENNARD SCALING  12

Moore’s Law continues

…but Dennard Scaling fails

Single threaded performance not improving

Circa ~2005: “The Era of Multicore” 

PROCESSORS 5



MOORE’S LAW AND DENNARD SCALING  13

Moore’s Law continues

…but Dennard Scaling fails

Single threaded performance not improving

Circa ~2005: “The Era of Multicore” 

→ Today: Transition to the “Era of Specialization”?  (c.f. Doug Burger)

PROCESSORS 5

We are not the only one facing the computing challenges 
faced with AI boom and data volume explosion



CMS PARTY@2016  14

Remember that Facebook ask you (at least used to) to tag 
people when you upload a photo?



CMS PARTY@2016  15

Runs image detection every time some one uploads a photo: 
Neutral network inference



CMS PARTY@2016  16

300 million photos uploaded/day as of 2018.Nov



PLATFORM PROS & CONS:  17

Silicon Technologies for Computing

CPUs 1X Today’s standard, most programmable, 
good for services changing rapidly

Manycore
CPUs 3X

Many simple cores (10s to 100s per chip), useful if 
software can be fine-grain parallel, difficult to maintain.  

GPUs 5-30X Good for data parallelism by merged threads (SIMD), 
High memory bandwidth, power hungry

FPGAs 5-30X
Most radical fully programmable option.  Good for 
streaming/irregular parallelism.  Power efficient but 
currently need to program in H/W languages.

Custom
ASICs > 100X Highest efficiency. Highest NRE costs. Requires high 

volume. Good for functions in very widespread use that 
are stable for many years. 

Structured
ASICS 20-100X Lower-NRE ASICs with lower performance/efficiency.

Includes domain-specific (programmable) accelerators.

Perf/WMore
Flexible

More
Efficient

Conventional 
programming

Alternative
programming

Can’t change
functionality



PLATFORM PROS & CONS FOR INDUSTRY:  18
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#TRENDING IN INDUSTRY: CO-PROCESSORS  19

Catapult/Brainwave
Specialized co-processor hardware 
for machine learning inference

FPGA

FPGA

FPGA

ASIC

ASIC?



POSSIBLE SOLUTIONS FOR US

Computationally intensive: iterative algorithms such as track reconstruction

 20

Option 1

re-write physics algorithms for new 
hardware

Language: OpenCL, OpenMP,TBB, 
HLS, …?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as a 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC

Example: tracking@HL-LHC: 
Option 1: Parallelized and Vectorized Tracking Using Kalman Filters

Option 2: Recent work on tracking using Graph Networks



POSSIBLE SOLUTIONS FOR US  21

Option 2

re-cast physics problem as a 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC

Advantage of option 2: recasting problem as machine learning 
problems (computing wise) 

• Algorithms can universally be expressed as simple matrix 
multiplications computations  

• Intrinsically parallelizable 
• Follow industry trends in developing co-processors optimized for ML 

and speed the up the inference(sub-event level reconstruction such as 
tracking)

Option 1

re-write physics algorithms for new 
hardware

Language: OpenCL, OpenMP,TBB, 
HLS, …?

Hardware: FPGA, GPU



Proof of concept: Particle physics computing with Brainwave

�22

Will explain this later with 
pretty pictures 

Picked this because of its  
mature eco system 



EVENT PROCESSING @ CMS EXPERIMENT  23

Offline

Offlin
e

FPGAs/ASICs - high bandwidth 
low latency specialized 
compute hardware

Traditionally CPU, growing 
exploration into heterogeneous 

computing... 
Brainwave!

processing reduces the rate of events to a manageable level to be saved for o�ine processing and is
often referred to triggering. Triggering typically happens in multiple tiers where the first tier (Level-1,
L1) is performed with custom electronics at very low latency (⇠ µs) and the second step (high level
trigger, HLT) is performed on more standard computing resources and has a latency of ⇠ 10� 100 ms.
Finally, o�ine analysis of the saved events passing the HLT can take significantly longer, though, the
o�ine processing time is limited by our computing resources. The latency landscape for various levels
of experimental event processing is illustrated in Fig. 1.

1μs 1ms 1s

LHC L1 Trigger  
(pipelined)

LHC  
High Level Trigger 

LHC/DUNE 
Offline processing 

Figure 1: Latency landscape

In this paper, we do not focus on the L1 triggering requirements and instead consider the gains
from hetergeneous compute resources to improve both our HLT and o�ine processing power.

When considering how best to use new optimized computing resources for physics, we must first
consider the event processing model employed by large physics experiments. An example of the current
compute model is shown in Fig. 2 where event data is processed, often sequentially, across multiple
CPU threads. It is important to note that the basic unit of processing is a single event and performing

Event SetupDatabase

Configuration Parameter 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Input Source
(data or simulation)

Output 1
Output 2

…
threads

MODULE 2

MODULE 1
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MODULE 4

ML INFER 1

MODULE 5

Event Processing Job

ML INFER 2

MODULE 6

Figure 2: Diagram of CMS computing model (To be updated!)

the same task for multiple events (batching) becomes significantly more complex to manage. The tasks
themselves, denoted in Fig. 2, as a module can be very complex, either with time-consuming physics
based algorithms, or as is becoming more popular, machine learning algorithms. It can be then seen
that the most time-consuming and complex tasks will be the latency bottleneck in event processing.
When considering extremely complex events from the CMS experiment for future upgrades, the time

– 3 –



EVENT PROCESSING @ CMS EXPERIMENT  24

Offline

Offlin
e

FPGAs/ASICs - high bandwidth low 
latency specialized compute hardware

Traditionally CPU, growing exploration 
into heterogeneous computing... 

Brainwave!
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– 3 –

Two parallel talks this afternoon for L1/HLT applications:  
“DNN based algorithm for CMS Level-1 muon reconstruction” by Jia Low. 
“Deep Machine Learning on FPGAs for L1 trigger and Data Acquisition” by Dylan 
Rankin 



CO-PROCESSORS WITH WEB SERVICE: BRAINWAVE  25

Even if co-processors are 100x faster, is it feasible to have every T1,T2,T3 
computing farm buy specialized hardware?


No, but… 
Interesting possibility for the HLT farm…

Offline solution: co-processors as a service

to analyze each event can be roughly 300 s. Add more about why batch-of-1 is important in particle
physics.

2.2 FPGA co-processors as a service

In order to improve event processing time in particle physics experiments, we explore the potential
of specialized hardware to accelerate machine learning algorithms. In particular, there have been
rapid developments in using GPUs [], FPGAs [], ASICs [], and specialized CPUs [] to speed up
ML inference and training times over traditional CPUs. Computing systems with mixed hardware
architectures are often referred to generally as heterogeneous computing. While there are many
hardware options to consider for co-processor acceleration, in this study, we are more focused on
exploring how we can best integrate heterogenous computing solutions into the particle physics
computing paradigm. In our work, we benchmark the recently released Microsoft Brainwave platform
which performs acceleration with Intel Altera FPGAs []. FPGAs as a compute solution o�er a nice
combination of low-power, parallelizable, and programmable hardware. Another important aspect of
FPGA inference, over say GPU acceleration, which is important for the particle physics community is
the lack of batching; performance for FPGAs is not diminished for "batch-size-of-one". The Brainwave
system, in particular, has scaled up FPGA acceleration at the cloud-scale demonstrating powerful
machine learning acceleration []. In Fig. 7, we have a schematic of the Brainwave system taken
from [1] illustrating cloud-scale configurable FPGA acceleration. The Brainwave system includes
interconnectivity of the FPGA acceleration elements and a direct connection to the network which
runs in parallel to the CPU-based software plane. The performance of other available acceleration
hardware systems will be explored in future work.

Figure 3: An schematic of Microsoft Catapult cloud acceleration platform [1]

While it is possible to consider accelerating custom physics algorithms (as opposed to ML
algorithms), but there are two important considerations:

• By considering ML algorithms, we can greatly benefit from developments outside of the particle
physics community. Industry and academic investment in machine learning is growing rapidly

– 4 –



BUILDING BLOCKS: CATAPULT V2  26

For more on MS catapult: see talk by A. Putnam 
https://www.dropbox.com/s/rvd06vp5ogguqxe/Catapult_2018_Fermilab_Public.pdf

Bump-in-the-wire Architectue

CPU

NIC
40G Ethernet

PCIe Gen 3 PCIe Gen 3

Compute Acceleration
Network Acceleration
Hardware as a Service

Stratix 
FPGA



PROOF OF CONCEPT: SONIC
Services for Optimized Network Inference on Co-processors
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(work in progress)

FPGA-accelerated machine learning inference as a solution for 

particle physics computing challenges 


Javier Duarte, Burt Holzman, Ben Kreis, Mia Liu, Kevin Pedro, N.T., Aris Tsaris (FNAL) 
Phil Harris, Dylan Rankin (MIT) 

+  Doug Burger, Eric Chung, Andrew Putnam (MS research), Ted Way,MS, David Lee (MS Azure) 

Question:  
How do we integrate heterogeneous computing resources into the 

physics event data processing model?

PRELIMINARY RESULTS!



PARTICLE PHYSICS COMPUTING MODEL  28

Our “unit” of analysis is at the event level, with complex interdependencies

Necessitates small “batch of a few” inferences

processing reduces the rate of events to a manageable level to be saved for o�ine processing and is
often referred to triggering. Triggering typically happens in multiple tiers where the first tier (Level-1,
L1) is performed with custom electronics at very low latency (⇠ µs) and the second step (high level
trigger, HLT) is performed on more standard computing resources and has a latency of ⇠ 10� 100 ms.
Finally, o�ine analysis of the saved events passing the HLT can take significantly longer, though, the
o�ine processing time is limited by our computing resources. The latency landscape for various levels
of experimental event processing is illustrated in Fig. 1.
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the same task for multiple events (batching) becomes significantly more complex to manage. The tasks
themselves, denoted in Fig. 2, as a module can be very complex, either with time-consuming physics
based algorithms, or as is becoming more popular, machine learning algorithms. It can be then seen
that the most time-consuming and complex tasks will be the latency bottleneck in event processing.
When considering extremely complex events from the CMS experiment for future upgrades, the time
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ACCESSING HETEROGENEOUS RESOURCES

Implemented New CMSSW feature called ExternalWork: 

o Asynchronous task-based processing 

o Non-blocking: schedule other tasks while waiting for external processing 

Can be used with GPUs, FPGAs, cloud, … 

➢Now demonstrated to work with Microsoft Brainwave! 

 29

External 
processing

CMSSW 
module acquire()

FPGA, 
GPU, etc.

produce()
Eve

nt 
da

ta CallbackEvent data Callback

More details on external work module: Kevin Pedro’s talk at CHEP

https://indico.cern.ch/event/587955/contributions/2937652/attachments/1679306/2697284/CMS_simulation_performance_CHEP2018.pdf


CLOUD VS EDGE  30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental 

Software

gRPC protocol Heterogeneous  
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous  
“Edge” Resource

gRPC
 protocol

Experimental 
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –



Logarithmic x-axis

Linear x-axis 
Quantization 

effect?

TESTING SONIC

Good performance in initial tests 
o“remote”: cmslpc @ FNAL to Azure (VA),  ‹time› = 56 ms 
o“onprem”: run CMSSW on Azure VM,  ‹time› = 10 ms  

(~2 ms on FPGA, rest is classifying and I/O)

 31



TRAVEL LATENCY?  32

→10 ms

With network switches?  May be about right :)

Speed of light



Logarithmic x-axis

Linear x-axis 
Quantization 

effect?

TESTING SONIC

Good performance in initial tests 
o “remote”: cmslpc @ FNAL to Azure (VA),  ‹time› = 56 ms 
o “onprem”: run CMSSW on Azure VM,  ‹time› = 10 ms  

(~2 ms on FPGA, rest is classifying and I/O)
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the single-thread performance and in CMSSW tests are two-fold: the TensorFlow version (1.06 vs.
1.10) and the processor speed (2.6 GHz vs. 3.6 GHz). It is not uncommon for hardware across the
global computing grid of the CMS experiment to vary in performance significantly which is another
consideration when deploying on-prem and remote services.

To summarize, for batch-of-one total inference time, we present Brainwave, CPU and GPU per-
formance in Table 1. The most straightforward comparison to make of current CMSSW performance

Table 1: A summary comparison of total inference time for Brainwave, CPU, and GPU performance

Type Hardware Mean inference time Setup
CPU Xeon 2.6 GHz, 1 core 1.75 seconds CMSSW, TF v1.�6

CPU i7 3.6 GHz, 1 core 500 ms standalone python, TF v1.1�
CPU i7 3.6 GHz, 8 core 200 ms standalone python, TF v1.1�
GPU NVidia GTX 1080 100 ms standalone python, TF v1.1�
GPU NVidia GTX 1080 7 ms TF internal, TF v1.1�

Brainwave Altera Stratix ? 10 ms CMSSW, on-prem
Brainwave Altera Stratix ? 56 ms CMSSW, remote

is the 10 ms (56 ms) on-prem (remote) that it would take to perform inferene on Brainwave versus what
is currently possible in CMSSW which is 1.75 seconds. This represents a factor of 175⇥ (30⇥) speedup
for Brainwave on-prem (remote) over current CMSSW performance. We can extrapolate that for more
modern versions of TensorFlow and CPUs, the CMSSW CPU inference time could improve to approx-
imately 500 ms. GPU comparisons can be more nuanced1 depending on the model implementation
and batch sizes. However, for a single batch, we can say that roughly the Brainwave inference times,
both on-prem and remote, are of a similar order to on-prem GPU inference times for batch-of-one.

4 Physics Examples with Transfer Learning

Thus far, we have presented dedicated results on the timing performance of the Resnet-50 model on
various computing architectures. Though we leave it to future work to study the deployment of existing
physics ML models in FPGA hardware (see discussion in Sec. 5), we demonstrate some examples of
using the existing Resnet-50 architecture for physics tasks. Deploying Brainwave for physics tasks
is done through transfer learning. In transfer learning, the primary featurizer network, including
its parameters, is unchanged from its original training; here, Resnet-50 is trained on the ImageNet
dataset. However, the classifer network, which is the final few fully-connected layers, is retrained and
the parameters are updated for a new application.

Because the Resnet-50 featurizer is trained on the ImageNet dataset, we do expect that it will
be optimal for physics tasks. However, we do know that general image classification tasks have

1For that matter, so can CPU comparisons when considering multi-core and large RAM devices. However, they do not
fit in with the CMSSW compute model.
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OTHER HARDWARE OPTIONS

Not so straightforward to compare against other hardware, the whole chain 
matters: pipelined inputs, IO bandwidth (PCIe), special instruction sets, etc. 
General findings:  

GPUs: O(~100 ms), for batch-1 input 
To explore: Google TPUs, AWS/Xilinx FPGAs, Intel/Altera FPGAs
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the Resnet-50 model file into CMSSW and perform a CPU inference with the version of TensorFlow
currently in the CMSSW release.

Standalone python benchmark results for CPU and GPUs are presented in Fig. 8. All such tests
are on-prem in the sense that the GPU is directly connected to the CPU. The CPU used in these tests
is Intel i7 3.6 GHz and the GPU is NVidia GTX 1080 Ti. For CPU, we compare the number of cores
used for either the Azure implementation of Resnet-50 or the conventional tensorflow Resnet-50. The
performance is shown versus the image batch size, whereas a reminder, particle physics applications
will typically be small O(1) batches. As expected the performance is stable with batch size. For
both models, we observe roughly the same inference time ranging from roughly 180 ms to 500 ms.
Additionally, we observe that the model inference time is near maximal with 4-cores with small
improvements beyond. For the GPU

The right plot of Fig. ?? shows the inference times on GPUs. The blue GPU points utilize the
Azure implementation of Resnet-50 where in this case, as with the Azure implementation on CPU, a
protobuf file is imported. This is what we would expect within CMSSW for custom models in the future
and represents the closest direct comparison of a GPU with the Azure FPGA implementation. The
other GPU lines consist of the o�cial Resnet-50 within TensorFlow. For inference times the o�cial
Resnet-50 and can have better inference times by factors of a few. An optimized version of Resnet-50
is also available. It gives a 0-20% reduction in inference with respect to the o�cial Resnet-50. All of
the GPU benchmarks also follow the trend as expected where for large image batch sizes, the aggregate
performance improves. The per image latency for a batch-of-one is found to be anywhere from 5-10
times worse the ultimate performance on a GPU.

Figure 8: Standalone inference time per image as a function of batch size of the tensorflow o�cial
Resnet-50 model compared with the azure Resnet-50 model for (Left) CPUs and (Right) GPUs. The
dashed line indicates a time of 10 ms consistent with the on-Prem ineference time of the Azure system.

Within CMSSW, we find that importing the protobufmodel of Resnet-50 can take approximately
5 minutes and then, once the model is imported, subsequent inferences take, on average, 1.75 seconds
per inference. This benchmark point can most closely be compared with the single thread CPU
performance that is shown in Fig. 8 and is approximately 500 ms. The main di�erences between
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Super optimized ResNet50

Official ResNet50 in tensorflow
Brainwave ResNet50 on GPU



HLT/OFFLINE OUTLOOK

Exploring the use of FPGA co-processors (MS Brainwave) for ML acceleration 
as an “off-the-shelf” computing paradigm for particle physics 

• Deploying cloud accelerators as a service fits the particle physics computing 
model in a non-disruptive way 

• For large computing tasks (Resnet-50), there is a ~(4/10/100)x benefit 
over CPU-only computations 

• Could be used for neutrino experiments ~today! 
• “Edge” compute option as an HLT solution? 

Outlook and further studies 
To explore: Google TPUs, AWS/Xilinx FPGAs, Intel/Altera FPGAs 

Important to benchmark different platforms to understand our options/
projections. 

Need to understand scaling (not too worried about this) 
What’s the costing model? 
Relies on continued development of ML algorithms for difficult physics problems 
(simulation/reconstruction)
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Physics case: Event classification in NOvA
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AVAILABLE MODELS AND SERVICES ON BRAINWAVE  37

Pre trained 

ResNet50
Featurizer

Physics images:

Neutrino events

Or Jet images

Retrain

Features

Transfer learning

dog



AVAILABLE MODELS AND SERVICES ON BRAINWAVE  38

Pre trained 

ResNet50
Featurizer

Physics images: 
Neutrino events 
Or Jet images

Retrain

Features

New feature: fine-tune the weights in featurizer too! Will be included in final results

Other models became available recently: VGG etc

Frozen



THE NOVA EXPERIMENT:
NuMI: Neutrinos at the Main 
Injector  
Long-baseline (anti-)neutrino 
oscillation experiment  
Two functionally identical 
detectors, optimized for νe 
identification  
Primary goal: 
measurement of neutrino 
oscillations via νμ→νe  
Other goals include: 
Searches for sterile neutrinos 
Neutrino cross sections 
Supernova neutrinos Cosmic ray 
physics  
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NuMI: Neutrinos at the Main 
Injector 
Long-baseline (anti-)neutrino  
oscillation experiment 
Two functionally identical detectors, 
optimized for νe identification 

Primary goal: 
measurement of 3-flavor 
oscillations via νμ→νμ and νμ→νe 

Other goals include:  
Searches for sterile neutrinos 
Neutrino cross sections 
Supernova neutrinos 
Cosmic ray physics

 29THE NOVA EXPERIMENT: NUMI OFF-AXIS   APPEARANCE EXPERIMENT



 40EVENT TOPOLOGY
Event Topologies

• Low Z detector materials:
• long tracks and well 

developed showers
• Key challenges:

» Muons and charged pions 
discrimination (muons 
produce longer tracks and 
less interaction with nuclei)

» Electron/photon 
discrimination (photons can 
travel a short distance before 
showering)

�31
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To 1 APD pixel
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typical
charged
particle
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γ

6 cm

Building  
block of  
NOvA

4 cm

Far Detector, on surface  
14 kTons 

896 readout planes 
344,064 pixels

» Highly segmented low Z tracking calorimeter.
» Cells are filled wit liquid scintillator

» wave shifting fiber readout.
» 65% active by volume
» Detection with avalanche photo diodes.
» Alternating X/Y planar geometry: 3D reconstruction

Near

Proto

NOVA DETECTORS

3D reconstruction



 41NOVA:NEUTRINO FLAVOR CLASSIFICATION

Training Setup
- training/testing: 

500K/150K
- Pre-trained 

ResNet-50 model 
on image net.

5 labels: 
- Muon neutrino
- Electron neutrino
- Tau neutrino
- Neutral Current
- Cosmic

Top View

Side View

Merged Input 

- Merged image scaled to resolution of 
224*224 using Bilinear Interpolation from 
TF, to be fed into ResNet50

-  100*80 



 42EVENTS WITH PROBABILITY LARGER THAN 0.9

Top View

Side View

Electron Neutrino
Top View

Side View

Top View

Side View

Top View

Side View

Top View

Side View

Muon Neutrino Tau Neutrino Cosmic Neutral Current

Events identified with more that 0.9 probability by the ResNet-50 network. 
Color represents energy deposit



Physics cases: jet substructure
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JET SUBSTRUCTURE  44



TRAINING STATUS

Generator level AK8 jets: quark/gluon/W/Z/top, density map of the 
pt of jet constituents.
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Averaged over 1000 images
Figure 10: A comparison of GPU and CPU inference times per image as a function of image batch
size for Resnet-50
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JET IMAGES  17
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Top quark gluon

1 W jet

Averaged over 1000 images
Figure 9: A comparison of GPU and CPU inference times per image as a function of image batch size
for Resnet-50
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Outlook and next steps
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TAKEAWAYS

Computing challenges in big data: More complex detectors and 
sophisticated algorithms, large datasets. 

We follow the industry trend in exploring specialized hardware (co-
processers) as ML acceleration options. 

Started with Microsoft brainwave, demonstrated FPGAs are a 
promising option to accelerate neural network inference: 
o Can achieve (at least) order of magnitude improvement over CPU  
o Better fit for CMS event-level computing model (vs. GPUs which 
require batching for efficiency)  
o Physics cases: Nova event classification& jet substructure using 
ResNet50 on brainwave. 

Proof of concept, more studies to follow 
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FURTHER NEXT STEPS

Model customization 
Whenever we talk about this — people are generally positive but always ask when we 
can put our own networks on the FPGAs 
Is it something we can work with you on?  Not just CNNs, but Graph NNs, LSTMs, 
etc… 

On-prem HLT-like demonstration 
An “edge” offering has been brought up a few times — this is something, 
with necessary infrastructure, we’re interested in pursuing if possible as a 
demonstration of the trigger (on-prem, real-time) capabilities 

Scaling up 
We should try to demonstrate running on N (>>1) CPUs  and M (>1) services 
to understand how to scale services.  This will give us an idea of cost scaling 
as well.   
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THE CMS SOFTWARE
CMSSW: 
o Hosted on GitHub 
o ~6 million lines of code 
o Handles simulation, raw data processing, reconstruction, analysis 

Event-based processing model: 
o Load event data into memory 
o Numerous modules process parts of event, output new products 

Parallelism: 
o Multiple events in flight → streams 
o Multiple modules running simultaneously → threads 
▪ Task-based multithreading using Intel Thread Building Blocks 

WLCG: Worldwide LHC Computing Grid 
o Network of computing clusters at labs, universities, etc. 
o Mostly commodity hardware
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https://github.com/cms-sw/cmssw/blob/master/RecoParticleFlow/PFTracking/python/hgcalTrackCollection_cfi.py


SONIC IN CMSSW

Services for Optimized Network Inference on Coprocessors 

Demonstration in Microsoft Brainwave: 

o Create “image” from jet constituents, process with ResNet50 

▪ Much larger than custom HEP networks (so far) 

o Send to Microsoft Brainwave FPGA using gRPC w/ TensorFlow (protobuf) 

o FPGA processes one image at a time → no batching needed to be efficient 

o Use ExternalWork mechanism 

▪ gRPC C++ API lacks a callback interface (currently) 

➢wait for gRPC return in lightweight std::thread 

SonicCMS repository on GitHub
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https://github.com/hls-fpga-machine-learning/SonicCMS/tree/kjp/1020_azureml_ew


MEMORY AND THREADS  54

Memory usage in 

different configurations Latency versus number of threads



COMPARISON TO GPU/CPU: UPDATE  55

Benchmark Nvidia GTX 1080, Intel i7 3.6 GHz 
Pure inference time (load time is 5 min for .pb file), TF v1.10

Full enqueuing with random inputs,

Large memory usage (12 Gb) with .pb input

Optimized TF version 
of Resnet-50

CPU}
GPU 

from .pb file
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Benchmark Nvidia GTX 1080, Intel i7 3.6 GHz 
Pure inference time (load time is 5 min for .pb file), TF v1.10

Full enqueuing with random inputs,

Large memory usage (12 Gb) with .pb input

Optimized TF version 
of Resnet-50

CPU}
GPU 

from .pb file

CPU comparison:


Intel i7 3.6 GHz (8 core, TF v1.10) ~ 180 ms 

Intel i7 3.6 GHz (1 core, TF v1.10) ~ 500 ms 

Intel i7 3.6 GHz (1 core, TF v1.06) ~ 1.2 s 

Intel Xeon 2.6 GHz (1 core, TF v1.06) ~ 1.75 s 
[what we are running]
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ANOTHER EXAMPLE: CMS HGC  58

Arabella Martelli 19/05/17

the 3D imaging clustering
• Reconstruction: need to separate individual particles in high pile-up environment 
• Current algorithm: imaging-clustering*  

=> best suited for the high granularity offered by the HGCal 
- builds 2d-clusters (each layer)  

based on the energy-density  
of the cells (energy and distance) 

- associate 2d-clusters aligned  
along the shower axis  
over different layers 

• Extendable to more than two dimensions:  
- 3d spatial clustering already showed improvements => exploit full spatial correlation of the 

shower development 

• * inspired by: [A. Rodriguez, A. Laio, “Clustering by fast search and find of density peaks”,  
                                                                       Science 344 (6191), 1492-1496. (June 26, 2014)] 8

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team 

26/11/14

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team 
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high pT jet 
O(500 GeV)

Tracks and clusters clearly
identifiable by eye throughout 

most of detector.

140PU

example of  
3d-cluster 
pattern recognition

example of  
2d-cluster 
topology



CMS PARTY@2016  59

Privacy issue: not the focus today but probably deserves a 
plenary talk in some other conferences…


